ВВЕДЕНИЕ В ОЦЕНКУ НЕОПРЕДЕЛЕННОСТИ ИЗМЕРЕНИЙ

Лектор: Байжұма Жандос Ескендірұлы

Тел.: +7 707 556 60 08

Email: zhandos.baizhuma@kaznu.edu.kz

Лекция 5. Определение суммарной стандартной неопределенности. Определение

расширенной неопределенности. Выбор коэффициента охвата. Представление результатов оценивания неопределенности.

Цель: Научить определять суммарную (объединённую) стандартную и расширенную неопределенности измерений, правильно выбирать коэффициент охвата и корректно представлять результаты измерений с учётом неопределенности.

Основные вопросы:

- 1. Понятие суммарной (объединённой) стандартной неопределенности.
- 2. Методы расчёта объединённой неопределенности.
- 3. Определение расширенной неопределенности.
- 4. Выбор коэффициента охвата и его значения.
- 5. Правила представления результатов измерений с указанием неопределенности.

Краткие тезисы:

- Суммарная (объединённая) стандартная неопределенность (u_s или u_c):
 - о Объединяет все составляющие неопределенности типов А и В.

Коэффициент охвата (k):

- Зависит от требуемой вероятности охвата.
- При нормальном распределении:

$$\circ$$
 k=2k = 2k=2 \rightarrow вероятность \approx 95 %

• Значение kkk выбирается исходя из стандартов, требований или условий измерений.

 $u^2(y) = u^2(8) + \varepsilon_R^2 + \sum c_i^2 u^2(x_i)$, при необходимости использовать скорректированную оценку $\frac{\varepsilon_R^2}{2}$ вместо $\frac{\varepsilon_R^2}{2}$, для учета факторов, рассматриваемых в разделе 8, приводит к общему выражению (12) для оценки суммарной стандартной неопределенности u(y) соответствующему результату y.

$$u^{2}(y) = \hat{s}_{R}^{2} + u^{2}(\hat{\delta}) + \sum_{i=1,n} c_{i}^{2} u^{2}(x_{i})$$
(12)

Значение $u(\mathcal{S})$ подсчитывают в соответствии с уравнением (13), см. также уравнение (A.8).

$$u(\widehat{\mathcal{S}}) = s_{\mathcal{S}} = \sqrt{\frac{s_{\mathcal{R}}^2 - (1 - 1/n)s_{\mathcal{P}}^2}{p}},\tag{13}$$

где p - количество лабораторий;

n - количество повторений в каждой лаборатории.

Переменная u(B) не использована в уравнении (12), потому что неопределенность s_L , соответствующая B, уже включена в $\frac{\varepsilon_2^2}{2}$, Индекс i охватывает воздействия, идентифицированные в разделах 8 и 9 (индексы изменяются от 1 до n). Очевидно, что если воздействия и их неопределенности малы по сравнению с s_R , то ими можно пренебречь для большинства практических целей. Например, неопределенность менее 0,2 s_R . ведет к изменению менее чем на 0,02 s_R оценки полной неопределенности.

При оценке суммарной расширенной неопределенности применяют следующие исследования для выбора коэффициента охвата k.

Для практических целей должно быть указано значение суммарной расширенной неопределенности, соответствующее уровню доверия 95 %. Однако выбор уровня доверия зависит от диапазона факторов, таких как критичность и последствия применения неправильных результатов. Эти факторы вместе с любыми рекомендациями или юридическими требованиями, касающимися применения, должны быть рассмотрены при выборе k.

Для большинства практических целей, когда требуется 95 %-ный уровень доверия и число степеней свободы в доминирующих составляющих неопределенности превышает 10 (>10), выбор k=2 обеспечивает достаточно надежный охват вероятного диапазона значений. Однако есть обстоятельства, в которых это приводит к существенной недооценке, особенно когда один или более значимых членов уравнения (12) имеют число степеней свободы менее 7.

- 13.2.3.2 Если один такой член $u_i(y)$ с v_i ,- степенями свободы доминирует [признаком является выполнение неравенства $u_i(y) > 0,7$ u(y)], обычно достаточно взять в качестве v_i эффективные степени свободы v_{eff} , соответствующие u(y).
- 13.2.3.3 Если несколько существенных членов имеют приблизительно равную величину и степени свободы, удовлетворяющие условию $v_i << 10$, для получения эффективных значений числа степеней свободы $v_{\it eff}$ следует применять уравнение Велча-Саттервейта (уравнение (15))

$$\frac{u^{4}(y)}{v_{\text{eff}}} = \sum_{i=1,N} \frac{u_{i}^{4}(y)}{v_{i}}.$$
 (15)

Значение k тогда выбирают из v_{eff} , используя значение квантиля двустороннего распределения Стьюдента для требуемого уровня доверия

и v_{eff} степеней свободы. Это наиболее безопасно при округлении нецелых чисел v_{eff} до ближайшего меньшего целого числа.

Вопросы для контроля изучаемого материала:

- 1. Что такое суммарная (объединённая) стандартная неопределенность?
- 2. Как производится расчёт объединённой неопределенности при независимых величинах?
- 3. Как определяется расширенная неопределенность?
- 4. Что такое коэффициент охвата и как выбирается его значение?
- 5. Как правильно оформить результат измерения с неопределенностью?
- 6. Почему важно указывать вероятность охвата при представлении результатов?

Рекомендуемый список литературных источников:

- 1. ISO/IEC Guide 98-3:2008 (GUM). Guide to the Expression of Uncertainty in Measurement.
- 2. JCGM 100:2008. Evaluation of measurement data Guide to the expression of uncertainty in measurement.
- 3. ISO 14253-1:2017. Geometrical product specifications Decision rules for proving conformity or nonconformity.
- 4. Алексеев С. В. Основы метрологии и измерений. СПб.: Питер, 2021.
- 5. Левин В. И. Неопределенность измерений и методы её оценки. М.: Логос, 2019.
- 6. Кузнецов Б. А. *Математическая обработка результатов измерений*. М.: Академия, 2020.